
Module 1: Launching into Computer Science Assignment 1 - Part 2: Algorithm and Programming Development

1 Introduction 2
1.1 Aim 2
1.2 Instructions for Use 2

2 Data storage 3

3 Functionality 4
3.1 Insertion 4
3.2 Deletion 6
3.3 Manipulation 7
3.4 Searching 8

4 Test Plan 9
4.1 Unit Tests 10

4.1.1 Testing the Distillery Attribute 10
4.1.2 Testing the Name Attribute 10
4.1.3 Testing the Age Attribute 11
4.1.4 Testing the Price Attribute 12

4.2 Functional Tests 12
4.2.1 Basic Usability Tests 13

4.2.1.1 Insertion - basic usability tests 13
4.2.1.2 Deletion - basic usability tests 14
4.2.1.3 Manipulation - basic usability tests 14
4.2.1.4 Sorting - basic usability tests 15

4.2.1 Error Handling Tests 16

5 Conclusion 17

6 README 17
6.1 Overview 17
6.2 Classes 18
6.3 Comparison with Design 19
6.4 Implementation 20

7 Testing Results 21
7.1 Unit Tests 21
7.2 Functional Tests 21

Page 1

Module 1: Launching into Computer Science Assignment 1 - Part 2: Algorithm and Programming Development

1 Introduction

1.1 Aim

“Top Shelf” is a desktop-based, stand-alone application designed for whisky

collectors and aficionados. It enables users to record and track their whisky

collection.

1.2 Instructions for Use

Upon opening the application, the user is greeted with a welcome window, which

informs them how many bottles are currently in their collection. From here, the main

system actions can be accessed by clicking on one of the following buttons: “Show

Collection”, “Add a Bottle”, “Edit a Bottle”, “Remove a Bottle”, “Find a Bottle”.

Figure 1: UML Use Case Diagram for Top Shelf Application

Page 2

Module 1: Launching into Computer Science Assignment 1 - Part 2: Algorithm and Programming Development

A UML use case diagram which provides an overview of the expected system

behaviour of the Top Shelf application from a user’s perspective is shown in Figure 1.

As illustrated, both “Edit a Bottle” and “Remove a Bottle” make use of the “Find a

Bottle” functionality to identify the bottle the user wishes to edit/remove from their

collection. “Show Collection” displays the entire collection in a table, which is sorted

by clicking the header of any of the four columns: distillery, name, age or price.

2 Data storage

The user’s collection is stored in a csv file while the application is not running. Upon

opening “Top Shelf”, the contents of the csv file are fetched from the hard drive of the

host machine. Each line of the csv contains the details of a bottle: its distillery, name,

age, and price. The application reads each line and stores the data in a Bottle object,

the UML diagram for which is included in figure 2.

distillery - the name of the distillery

name - the name of the individual bottling

age - the age statement of the bottle, which can be a whole

number of years (e.g. 10).

price - the price of the bottle in pounds sterling stored as a

float in the format ##.##

The Bottle objects are stored in a list data structure while the application is running.

The list data structure was chosen as it is part of the standard Python library and

Page 3

Module 1: Launching into Computer Science Assignment 1 - Part 2: Algorithm and Programming Development

includes ready-made functions for list manipulation, adding, removing and sorting

items.

3 Functionality

“Top Shelf” allows the user to manipulate their collection by adding new bottles

(Section 4.1), removing bottles (Section 4.2), editing existing bottles (Section 4.3),

and searching their collection for particular bottles (Section 4.4). This section

contains a detailed description of the steps the user must take in order to achieve

each action. Each action is accompanied by a flowchart illustrating the user journey

and a series of wireframes showing the design of the user interface.

3.1 Insertion

The user can add a new bottle to their collection. The flowchart in Figure 3 details

how this action is executed.

Figure 3: Flowchart depicting the Add a Bottle process

Page 4

Module 1: Launching into Computer Science Assignment 1 - Part 2: Algorithm and Programming Development

From the homepage, the user clicks the “Add a Bottle” button from the main menu.

This brings them to the “Add a Bottle” page. After entering the details, the user

clicks “Save Details”. The software checks the validity of the entry, ensuring that the

distillery is a string containing only letters, the name has not been left blank, the age

is an integer or “N/A”, and the price is an integer or a number with two decimal

places. If any of these conditions are not met, an “Invalid Entry” warning message

is displayed and the user is prompted to re-enter the details in the correct format. If

the details entered are valid, the software adds the bottle to the list containing the

collection and the display prompts the user that the entry was successfully recorded.

The user is asked whether they want to add another bottle. Clicking “Yes” repeats

the process from the empty “Add a Bottle” page, while “No” returns the user to the

homepage and main menu. Wireframe designs for the pages are included in Figure

4.

Figure 4: Wireframes from screens in the Add a Bottle process

Page 5

Module 1: Launching into Computer Science Assignment 1 - Part 2: Algorithm and Programming Development

3.2 Deletion

The user can remove a bottle from their collection, as illustrated in the flowchart in

Figure 5.

Figure 5: Flowchart depicting Remove a Bottle process

From the homepage, the user clicks the “Remove a Bottle” button from the main

menu. This brings them to the “Show Collection” page. The user can sort the

collection by any of the four attributes by clicking on the appropriate column header.

The display prompts the user to double-click a bottle to delete it.

When a bottle in the table is double-clicked, the “Bottle Details” page is displayed.

To remove the bottle from the collection, the user clicks “Remove”, after which a

message is displayed asking them to confirm that they wish to permanently remove

the bottle from their collection. Clicking “Cancel” interrupts the deletion and returns

to the main menu on the homepage. After deleting the bottle, the user is asked

whether they want to remove another. Clicking “Yes” repeats the process from the

empty “Show Collection” page, while “No” returns the user to the homepage and

main menu. Wireframe designs of the screens encountered in this process are

included in Figure 6.

Page 6

Module 1: Launching into Computer Science Assignment 1 - Part 2: Algorithm and Programming Development

Figure 6: Wireframe designs of the screens encountered in the Remove a Bottle process

3.3 Manipulation

The user can edit any of the bottles in their collection, the steps of which are

illustrated in the flowchart in Figure 9.

Figure 7: Flowchart depicting the Edit a Bottle process

From the homepage, the user clicks the “Edit a Bottle” button from the main menu.

This brings them to the “Show Collection” page. The user can sort the collection by

any of the four attributes by clicking on the appropriate column header. The display

prompts the user to double-click a bottle to edit it.

When a bottle in the table is double-clicked, the “Bottle Details” page is displayed.

To edit the details, the user enters the new information in the appropriate fields. To

save the new information, the user clicks “Update”. After confirming their action a

message notifies the user that the details were updated successfully. Clicking

Page 7

Module 1: Launching into Computer Science Assignment 1 - Part 2: Algorithm and Programming Development

“Cancel” allows the original entry to persist and returns to the main menu on the

homepage. After deleting the bottle, the user is asked whether they want to remove

another. Clicking “Yes” repeats the process from the empty “Show Collection”

page, while “No” returns the user to the homepage and main menu. Wireframe

designs of the screens encountered in this process are included in Figure 8.

Figure 8: Wireframe designs for screens encountered in the Edit a Bottle process

3.4 Searching

The user can search their collection for a specific bottle; the process for doing this is

illustrated in the flowchart in Figure 7.

Figure 9: Flowchart depicting the Find a Bottle process

Page 8

Module 1: Launching into Computer Science Assignment 1 - Part 2: Algorithm and Programming Development

From the homepage, the user clicks the “Find a Bottle” button from the main menu.

This brings them to the “Bottle Details” page. The user can enter details in any of

the four attributes: distillery, name, age, price, and click “Find”. The details they

have entered are verified to make sure that they are valid. Then, they are redirected

to the “Show Collection” page, which has a table containing details of all bottles in

the collection that match the terms of the search. The table can be sorted by clicking

on the appropriate column header.

When a bottle in the table is double-clicked, the “Bottle Details” page is displayed

with three action buttons, “Edit”, “Remove”, “Cancel”. Clicking either of the first

two will lead to one of the actions detailed above, while clicking “Cancel” will return

the user to the homepage and main menu. Wireframe designs of each of the screens

visited in this process are shown in Figure 8.

Figure 10: Wireframe designs for screens encountered in the Find a Bottle process

4 Test Plan

Two testing strategies will be implemented on the “Top Shelf” application: unit tests

and functional tests. Unit tests will be automated and run on the Bottle object to

ensure that it stores only the intended data types and that other non-valid data will

raise an appropriate error handling message.

Page 9

Module 1: Launching into Computer Science Assignment 1 - Part 2: Algorithm and Programming Development

4.1 Unit Tests

The tables in Figures 11-14 contain the individual unit tests for each attribute of the

Bottle object. Each test will attempt to instantiate a Bottle object from the Bottle

class. The first column shows the individual test case, the second column contains

the input, and the third column contains the expected output.

4.1.1 Testing the Distillery Attribute

Figure 11 contains the four test cases being run against the distillery name. The

entry for a distillery should be a string beginning with a capital letter, containing only

letters from the alphabet, and should never be left blank.

Test Case Name Input Expected Result

test_distillery_Ardbeg_expect_Ardbeg “Ardbeg” “Ardbeg”

test_distillery_lowercase_expect_Titlecase “ardbeg” “Ardbeg”

test_distillery_empty_string_expect_inputerror “” Inputerror - “distillery

test_distillery_including_numbers_expect_inputerror “Ardbeg10” Inputerror - “distillery”

Figure 11: Unit tests for the distillery attribute of the Bottle object

4.1.2 Testing the Name Attribute

The entry for a bottling name should be a string containing any combination of

alphanumeric characters which should never be left blank. The table in Figure 12

contains the four test cases being run against the bottling name.

Page 10

Module 1: Launching into Computer Science Assignment 1 - Part 2: Algorithm and Programming Development

Test Case Name Input Expected Result

test_name_Uigeadail_expect_Uigeadail “Uigeadail” “Uigeadail”

test_name_lowercase_expect_Titlecase “uigeadail” “Uigeadail”

test_name_with_integer_expect_string 10 “10”

test_name_empty_string_expect_inputerror “” Inputerror - “name”

Figure 12: Unit tests for the name attribute of the Bottle object

4.1.3 Testing the Age Attribute

Figure 13 contains five test cases being run against the age attribute. Valid entries

are integers representing the age of the bottling in whole years, or N/A which

represents no age statement and will be stored as 0 in the Bottle object. This will

ensure all bottles have an integer for the age making it easy to sort the collection by

age if required. Should the age entry box be left blank when creating a new bottle,

the bottle will be given a default value of “N/A”.

Test Case Name Input Expected Result

test_age_NA_expect_0 “N/A” 0

test_age_15_expect_15 15 15

test_age_15.5_expect_inputerror 15.5 Inputerror - “age”

test_age_with_string_expect_inputerror “Ten” Inputerror - “age”

test_age_with_empty_string_expect_0 “” 0

Figure 13: Unit tests for the age attribute of the Bottle object

Page 11

Module 1: Launching into Computer Science Assignment 1 - Part 2: Algorithm and Programming Development

4.1.4 Testing the Price Attribute

The price of a bottle should be stored as a float - a number with two decimal places.

Figure 14 contains five test cases being run against the price attribute. Entries other

than an integer or a floating point number would be met with an Inputerror.

Test Case Name Input Expected Result

test_price_with_55point95_expect_55point95 55.95 55.95

test_price_with_integer_expect_two_dps_added 55 55.00

test_price_with_three_dps_expect_two_dps_added 55.555 55.56

test_price_with_string_expect_inputerror “Expensive” Inputerror - “price”

test_price_with_empty_string_expect_inputerror “” Inputerror - “price”

Figure 14: Unit tests for the price attribute of the Bottle object

4.2 Functional Tests

Functional tests have two main purposes, to check the basic usability of an

application, i.e. does it do what it’s supposed to do?, and to check the error handling

of the application, i.e. when things go wrong, does the software deal with the errors

appropriately? These tests can be manual and/or automated. The flowcharts

demonstrating the functionality of the application are very useful when designing

functional tests as they describe the “happy path”, what the application should do

provided everything goes as expected.

Page 12

Module 1: Launching into Computer Science Assignment 1 - Part 2: Algorithm and Programming Development

4.2.1 Basic Usability Tests

This section lists the basic usability tests which check each of the four main functions

of the app: insertion tests are listed in Section 5.2.1, deletion tests in Section 5.2.2,

data manipulation tests in Section 5.2.3, and sorting tests in Section 5.2.4. The

tables included in each section have five columns. Column 1 contains a short

summary of what is being tested, Column 2 shows the initial dataset contained in the

list before the test begins, Column 3 lists the steps to be taken by the tester, Column

4 shows the expected screen after the tester’s input, and Column 5 shows the

expected resulting dataset.

4.2.1.1 Insertion - basic usability tests

Test
Name

Initial
dataset

User actions Resulting Screen Expected Dataset

Enter a bottle
with valid
attributes -
integers for age
and price

[empty list] ● Open Application
● Click “Add a Bottle”
● Enter the following values:

Distillery: Clynelish
Name: Sherry
Age: 10
Price: 99

● Click “Save Details”

[[“Clynelish”, “Sherry”, 10, 99.00]]

Enter a bottle
with valid
attributes - N/A
for age and float
for price

[empty list] ● Open Application
● Click “Add a Bottle”
● Enter the following values:

Distillery: Clynelish
Name: Sherry
Age: N/A
Price: 99.00

● Click “Save Details”

[[“Clynelish”, “Sherry”, 0, 99.00]]

Enter a bottle
with valid
attributes -
[blank entry] for
age and float for
price

[empty list] ● Open Application
● Click “Add a Bottle”
● Enter the following values:

Distillery: Clynelish
Name: Sherry
Age:
Price: 99.00

● Click “Save Details”

[[“Clynelish”, “Sherry”, 0, 99.00]]

Enter bottle
details but click
“Cancel”

[empty list] ● Open Application
● Click “Add a Bottle”
● Enter the following values:

Distillery: Clynelish
Name: Sherry
Age: N/A
Price: 99.00

● Click “Cancel”

[empty list]

Page 13

Module 1: Launching into Computer Science Assignment 1 - Part 2: Algorithm and Programming Development

Enter bottle
details, press
Cancel, but
reject
confirmation

[empty list] ● Open Application
● Click “Add a Bottle”
● Enter the following values:

Distillery: Clynelish
Name: Sherry
Age: N/A
Price: 99.00

● Click “Cancel”
● Click “No”

[empty list]

4.2.1.2 Deletion - basic usability tests

Test
Name

Initial
dataset

User actions Resulting Screen Expected Dataset

Remove bottle
from collection

[[“Clynelish”,
“Sherry”, 0,
99.00]]

● Open Application
● Click “Remove a Bottle”
● Double click the row in the

table with the following
values:

Distillery: Clynelish
Name: Sherry
Age: N/A
Price: 99.00

● Click “Remove”

[empty list]

Remove bottle
from collection,
but click
“Cancel”

[[“Clynelish”,
“Sherry”, 0,
99.00]]

● Open Application
● Click “Remove a Bottle”
● Double click the row in the

table with the following
values:

Distillery: Clynelish
Name: Sherry
Age: N/A
Price: 99.00

● Click “Cancel”

[[“Clynelish”, “Sherry”, 0, 99.00]]

Remove bottle
from collection,
but don’t
double-click
bottle

[[“Clynelish”,
“Sherry”, 0,
99.00]]

● Open Application
● Click “Remove a Bottle”
● Single click the row in the

table with the following
values:

Distillery: Clynelish
Name: Sherry
Age: N/A
Price: 99.00

[[“Clynelish”, “Sherry”, 0, 99.00]]

4.2.1.3 Manipulation - basic usability tests

Test
Name

Initial
dataset

User actions Resulting Screen Expected Dataset

Edit bottle in
collection

[[“Clynelish”,
“Sherry”, 0,
99.00]]

● Open Application
● Click “Edit a Bottle”
● Double click the row in the

table with the following
values:

Distillery: Clynelish
Name: Sherry
Age: N/A
Price: 99.00

● Enter 14 in the name entry
box.

● Click “Update”

[[“Clynelish”, “14”, 0, 99.00]]

Page 14

Module 1: Launching into Computer Science Assignment 1 - Part 2: Algorithm and Programming Development

Edit bottle in
collection, but
click “Cancel”

[[“Clynelish”,
“Sherry”, 0,
99.00]]

● Open Application
● Click “Edit a Bottle”
● Double click the row in the

table with the following
values:

Distillery: Clynelish
Name: Sherry
Age: N/A
Price: 99.00

● Enter 14 in the name entry
box.

● Click “Cancel”

[[“Clynelish”, “Sherry”, 0, 99.00]]

Edit bottle in
collection
without
changing any
values

[[“Clynelish”,
“Sherry”, 0,
99.00]]

● Open Application
● Click “Edit a Bottle”
● Double click the row in the

table with the following
values:

Distillery: Clynelish
Name: Sherry
Age: N/A
Price: 99.00

● Do not change any of the
entries

● Click “Update”

[[“Clynelish”, “Sherry”, 0, 99.00]]

4.2.1.4 Sorting - basic usability tests

Test
Name

Initial dataset User actions Resulting Screen Expected Dataset

Sort collection
by distillery
name

[[“Clynelish”,
“Sherry”, 10, 99.00],
[“Ardbeg”,
“Uigeadail”, 0,
59.00]]

● Open Application
● Click “Show

Collection”
● Double click the header

of the distillery column

[[“Ardbeg”, “Uigeadail”, 0, 57.00],
[“Clynelish”, “Sherry”, 10, 99.00]]

Sort collection
by name

[[“Clynelish”,
“Sherry”, 10, 99.00],
[“Ardbeg”,
“Uigeadail”, 0,
59.00]]

● Open Application
● Click “Show

Collection”
● Double click the header

of the distillery column

[“Clynelish”, “Sherry”, 10, 99.00],
[“Ardbeg”, “Uigeadail”, 0, 57.00]]

Sort collection
by age

[[“Clynelish”,
“Sherry”, 10, 99.00],
[“Ardbeg”,
“Uigeadail”, 0,
59.00]]

● Open Application
● Click “Show

Collection”
● Double click the header

of the distillery column

[[“Ardbeg”, “Uigeadail”, 0, 57.00],
[“Clynelish”, “Sherry”, 10, 99.00]]

Sort collection
by price

[[“Clynelish”,
“Sherry”, 10, 99.00],
[“Ardbeg”,
“Uigeadail”, 0,
59.00]]

● Open Application
● Click “Show

Collection”
● Double click the header

of the distillery column

[[“Ardbeg”, “Uigeadail”, 0, 57.00],
[“Clynelish”, “Sherry”, 10, 99.00]]

Page 15

Module 1: Launching into Computer Science Assignment 1 - Part 2: Algorithm and Programming Development

4.2.1 Error Handling Tests

This section lists the error handling functional tests which check how the application

reacts when the user enters invalid data. It is important that the application displays

appropriate error messages when the user enters corrupt/invalid data, and also

important that accurate prompts are given on how to correct the entry, e.g. informing

the user of the data type that is expected for a certain field. The tables included in

each section have five columns. Column 1 contains a short summary of what is

being tested, Column 2 shows the initial dataset contained in the list before the test

begins, Column 3 lists the steps to be taken by the tester, Column 4 shows the

expected screen after the tester’s input, and Column 5 shows the expected resulting

dataset.

Test
Name

Initial dataset User actions Resulting Screen Expected Dataset

Add new
bottle with
numbers in
the distillery
name

[empty list] ● Open Application
● Click “Add a Bottle”
● Enter the following

values:
Distillery: Clynelish14
Name: Sherry
Age: N/A
Price: 99.00

● Click “Save Details”

[empty list]

Add new
bottle with no
name

[empty list] ● Open Application
● Click “Add a Bottle”
● Enter the following

values:
Distillery: Clynelish
Name:
Age: N/A
Price: 99.00

● Click “Save Details”

[empty list]

Add new
bottle with age
written in
letters

[empty list] ● Open Application
● Click “Add a Bottle”
● Enter the following

values:
Distillery: Clynelish
Name: Sherry
Age: Ten
Price: 99.00

● Click “Save Details”

[empty list]

Page 16

Module 1: Launching into Computer Science Assignment 1 - Part 2: Algorithm and Programming Development

Add new
bottle with age
including a
decimal point

[empty list] ● Open Application
● Click “Add a Bottle”
● Enter the following

values:
Distillery: Clynelish
Name: Sherry
Age: 10.00
Price: 99.00

● Click “Save Details”

[empty list]

Add new
bottle with no
price

[empty list] ● Open Application
● Click “Add a Bottle”
● Enter the following

values:
Distillery: Clynelish
Name: Sherry
Age: 10
Price:

● Click “Save Details”

[empty list]

5 Conclusion

This application has been designed for whisky collectors. The functionality is very basic but

includes the main functions needed to manage a list of data - insertion, deletion,

manipulation, and searching. The simple, user-friendly GUI ensures that the application will

be useful to a wider range of users than if it only had a command line interface. The

comprehensive testing plan should ensure that the application works as expected, and

should not suffer from unexpected, unhandled errors.

6 README

6.1 Overview

The TopShelf application allows a user to record, track, and update their whisky

collection, allowing users to record four attributes for each bottle in their collection,

distillery name, bottling name, age, and price. Standard functionality for data storage

and manipulation is included: insertion, deletion, manipulation (editing and sorting),

and searching. The application has been designed using object oriented principles

Page 17

Module 1: Launching into Computer Science Assignment 1 - Part 2: Algorithm and Programming Development

and uses the Tkinter library for GUI implementation. A bottles.csv file has been

provided with sample data so the application can be used as intended.

6.2 Classes

The Bottle class is used for storing each bottle in the collection as an object. The

attributes are initiated as certain data types - integers, strings, etc. which makes it

possible to ensure the data is valid and functions/methods can be written which treat

each bottle as generic examples of the same ‘thing’.

The TopShelfApp class is the main class for the application. This opens a window

containing a Tkinter frame which is used as a container for all the other pages (which

are actually frames layered on top of each other). This class contains most of the

methods used throughout the program so that they can be accessed from anywhere

within the code.

There are six classes which act as separate pages for the application: Homepage,

AddBottlePage, EditBottlePage, FindBottlePage, RemoveBottlePage,

ShowCollectionPage. Each of these is a Tkinter Frame object which has been

initialised inside the TopShelfApp frame and can be ‘displayed’ by bringing it to the

front of the pile calling the show_frame method.

There are two classes to enable error handling: the Error class which provides a

base class for exceptions, and the InputError class, a subclass of the Error class

which displays a message to the user each time an InputError is raised.

Page 18

Module 1: Launching into Computer Science Assignment 1 - Part 2: Algorithm and Programming Development

6.3 Comparison with Design

The implementation closely follows the design specified in part 1. The user journey

represented by the flow charts has been closely followed, while the user interface is

an exact implementation of the wireframes with one exception - the searching

functionality. It was originally envisaged that the user would be allowed to enter a

distillery, name, and age on a details page and that this would be used to filter the

collection, displaying the results in a table with functional buttons below it, as shown

in Figure 10 on page 9.

Searching the collection using three different parameters left a lot of room for user

error, and if any of the parameters were left empty, it was challenging to write a

simple search function which could ignore blank parameters. It was also decided that

this is not really a user-friendly way of searching a collection. In the end, it seemed

more user-friendly to have a text entry box beneath the table of bottles which allowed

the user to enter a distillery name or a bottle name and the table would be filtered on

both fields. This was also made responsive by filtering the collection as the user is

typing, e.g. you enter ‘a’ and all bottles with a distillery or bottle name beginning with

‘A’ are displayed in the table; you add an ‘r’ and then the table is further filtered to

show only entries that begin with ‘Ar’. This seemed like a much more user-friendly

way of searching. There is a screenshot of this process below.

Page 19

Module 1: Launching into Computer Science Assignment 1 - Part 2: Algorithm and Programming Development

6.4 Implementation

Insertion is achieved using the in-built append method which adds an item to the

end of a list.

Deletion is achieved by allowing users to choose a bottle from the collection, the

index of which is stored in the current_bottle attribute of the Main Application. This

index is then used by the in-built pop(index) method to remove the bottle from the

list.

Editing follows a similar pattern, combining the functionality above to delete the

bottle with the current_bottle index and append a new bottle with the updated

details to the end of the list.

Sorting is controlled by the sort_bottles_by method which takes an attribute and

uses Python’s sorted() method to update the bottle list to a version of the list sorted

by the specified attribute.

Page 20

Module 1: Launching into Computer Science Assignment 1 - Part 2: Algorithm and Programming Development

Searching is implemented in the search_bottle_for_entry method which takes a

search term and uses Python list iteration and the in-built startswith string method

to return a sublist of bottles where the distillery or name attributes start with the

search term.

7 Testing Results

7.1 Unit Tests

The automated unit tests which test the Bottle object stores only the intended data types

and that other non-valid data will raise an appropriate error handling messages were

implemented exactly as planned in the design (Part 1). There are 17 individual tests

which can be found in the test_bottle.py file.

7.2 Functional Tests

Functional tests were also completed exactly as specified in Part 1. The test

expectations and results are listed in detail in section 4 above. Due to constraints on

word limit, it is not possible to detail all of the tests again, but as an example a

couple of tests with actual screenshots from the application are included below.

Page 21

Module 1: Launching into Computer Science Assignment 1 - Part 2: Algorithm and Programming Development

Add a bottle with numbers in the distillery name:

Sort collection by distillery name - double click ‘distillery’ header:

Before After

All other tests that were specified in Part 1 of this assignment were also completed and

passed.

Page 22

